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ABSTRACT. Let F, be a field with q elements such that gcd(mp, q(¢ — 1)) = 1 and
q? = 1(mod mp®), where m is prime and p > m is prime. In this paper, we give all
primitive idempotents in a ring I, [x]/ (x™P* — 1). We give the weight distributions of all
irreducible cyclic codes of length mp* over IF,.
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1. INTRODUCTION

Let IF, be a field with g elements. Let C be an [n, k] linear code over F,, that is , it is a k-

dimensional subspace of F/'. If for every codeword (co, c1,¢p, e ,Cn—1) € C,
(Ci=1,Co» C1)Coy e ver e ,Ch—2) € C then we call ¢ as a cyclic code. We identify the
codeword (cg, €1,Cg, wee wue one ,Ch—1) in C with the polynomial ¢y + c;x + c;x? +

“ Cp_gx™1in F,[x]/ {(x™ — 1). The code C of length n over field IF, corresponds to a
subset of FF,[x]/ (x™ — 1). Then C is said to be cyclic code iff the corresponding subset is
an ideal of [F,[x]/ (x™ — 1). Observe that each ideal of FF,[x]/ (x™ — 1) is the principal
ideal. Suppose that g(x) is a monic divisor of x™ — 1 in the field [F,. Then code C which
corresponds to (g(x)) is a cyclic code, g(x) is called a generator polynomial and h(x) =
(x™ —1) /g(x) is referred to the parity-check polynomial of the code C. If h(x) has an
irreducible factor over IF,, we refer the cyclic code as irreducible. The Irreducible cyclic
codes of length n over FF, can be viewed as the ideals of the ring FF,[x]/ (x™ — 1)
generated by the primitive idempotents.

Many papers investigated the primitive idempotents of R, = F,[x]/ (x™ — 1) which
are mentioned as follows:

Forn=2,4, 1™ and 2™, where [ is an odd prime and q (prime power) is a primitive root
modulo n, Arora and Pruthi got primitive idempotents in R,, in [2, 15]. For n = 2™,
m > 3, Pruthi gave all explicit expressions of the m + 1 idempotents in ring R,,; Sharma
et al. has obtained all the primitive idempotents and the irreducible cyclic codes in R, in
[14, 17]. For n = IT*l,, where l;,1,,q are the distinct odd prime numbers, q is the

common primitive root modulo [7* and [,, and gcd (@@) = 1, Bakshi and Raka

obtained all 3m+ 2 primitive idempotents in ring R, in [4]. For n= [[*I}},
where 14, 15, g are the distinct odd prime numbers, gcd(¢p (7", ¢ (15)) = 2, ordl;nl (@) =

40 International Journal of Engineering, Science and Mathematics
http://www.ijesm.co.in, Email: ijesmj@gmail.com




ISSN: 2320-0294LImpact Factor: 6.765

(21 D and ord mz(q) ICH 2 ) . Singh and Pruthi presented all explicit expressions for all

dmim, +2my +2m;, +1 pr|m|t|ve |dempotents inring R, in[18]. Forn =1", m > 1,
where [ is an odd prime and ordm(q) = 2@ Arora et al. had given all explicit
expressions for all the 2m + 1 primitive |dempotents inR, in[1]. Forn=2I"m>1,
where [ is an odd prime number and ord,m (q) = %lm). Batra and Arora got all explicit
expressions for 4m + 2 primitive idempotents in the ring R, in [3]. Forn =1, m > 1,
where [ is an odd prime number and [/(q — 1), Chen et ' al. recursively gave all the
primitive idempotents and the minimum Hamming distances of all the codes
generated by those primitive idempotents in the ring R, in [6]. For n = ('},
my = 1,m, = 1 where [y, [, are the distinct prime numbers and [;1,/(q — 1); n = 4™
and 81™, where [ is an odd prime number and [/(q — 1), Li and Yue et al. obtained all the
primitive idempotents and the minimum Hamming distances of all the codes generated
by those primitive idempotents in the ring R,,, respectively in [10, 11]. In [12] Fengwei
Li and Qin Yue take F,, finite field with q elements such that [”||(q" — 1), gcd(l,q(q —
1)) = 1, where [, t are prime numbers and v is the positive integer. They gave all the
primitive idempotents in the ring F, [X]/{x'" —a) fora € F;. Specially for t = 2, they
gave weight distributions of all irreducible constacyclic codes, and their dual codes of
length I™ over the field F,. In [7], Kumar, Pankaj and Pruthi take F;, finite field with [

elements and n=2“pf1p§’2 D¢, where a,ay,ay,..,a, be positive integers and
D1y D2y wee e en ,pe are distinct odd prime numbers and 4pq,p,, ... ... ... ,Pe/l— 1. They

have studied the factorization of x2°P1'P2”~Pc* — 1 over the field F; and all the primitive
idempotents in ring F; [x]/(xzapglng,_,pge — 1). Moreover, they obtained the dimensions
and minimum hamming distances of all the irreducible cyclic codes of length
24p1py? ...y over the field F;.
Suppose A; be the number of code words with the Hamming weight ‘i’ in code C of
length n. The weight enumerator of ¢ may be defined as

A(z) =1+ Ajz+ Ayz® + -+ A, 2"
The sequence (1,44, 4,, ..., A,) is called weight distribution of the code C. In coding
theory, it is generally desirable to know weight distributions of the codes because they can
be used to estimate error correcting capability and the error probability of the error
detection and correction with respect to some algorithms.

In this paper, we shall always assume that p > m is a prime number with gcd
(mp,q(q — 1)) = 1, q*> = 1(mod mp®). We obtain all the primitive idempotents in the
ring F,[x]/ (x™° — 1). Next, we give all weight distributions of all the irreducible cyclic
codes and their dual codes of length mp*over the field [F,.

Notation: ¢, denotes the primitive e-th root of unity over the field F 2.

This paper is organized as follows:

In Section 2, we recall some of the preliminary concepts and basic theorems.

In section 3, all the primitive idempotents in the ring IF [X]/ (x™° — 1) are given.

In Section 4, the weight distributions are obtained of all the irreducible cyclic codes of
length mp* over the field IF,.
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2. PRELIMINARIES

Let C be the cyclic code. There is an unique codeword c(x) which satisfies the relation
c?(x) = c(x) and € = {c(x)), then the codeword c(x) is called the idempotent. The
idempotent of an irreducible cyclic code is called primitive idempotent.

Lemma 2.1. Assume that t > 2. For any a € F,” with o(a) = [, then the binomial
(x* —a) is irreducible over the field F, iff both the following two conditions are
satisfied:

(1) Every prime divisor of t divides k, but does not divide q;—l ;

(ii) If 4/t, then 4/(q — 1).
Lemma 2.2 Let¢ € F, be the root of x* — 1, where gcd(q, t) = 1. Then

t—1
ij _ {0 ?ff * 1
tifé=1
j=0
3. PRIMITIVE IDEMPOTENTS IN F,[x]/ (x™° — 1)

Let IF, be finite field having g elements. Fengwei Li and Qin Yue et al. gave all the
primitive idempotents in the ring IF, [x]/ (x™ — 1), where 1Y||(qg* — 1) and gcd(l, q(q —
1)) = 1, where L, t are prime numbers and v is the positive integer. Let [F, and FF 2 be the
finite fields having q and g2 elements, respectively. Chen et al. [5] gave all the irreducible
factorization of (x©’?" — a) over the field F,, where a € F,", s be a non-negative integer,
[ > 3is the prime number, gcd(l,q) = 1 and I[/(q — 1). In this section, we always assume
that p > m is a prime number having gcd(mp, q(q — 1)) = 1, ¢* = 1(mod mp*®). We
shall explicitly determine all the irreducible factors of x™° — 1 in the polynomial ring
Fg[x].

mp
XM 1 = l_l(x — Efnps),
j=1

where &, s is the mp®-th root of unity in the field F ..
Definition 3.1 Let T = {j: 1 <j <mp®}, Tp,s = {mp°},

Ty = {p°, 2p%, 3p%, 4p°, 5p°, ... ... ... ,(m—DpS}, T*=T—-T,, T, ={t=15"v €
T:ged(v,p) =1 1<t<mps}forl <r<s.
Define
Pr(x) = n(x - ffnps) , r=12,..... ,S
teT,*
Note that T,,,s = {mp°®}, To = {p°®, 2p°, 3p°, 4p°, 5p°, .. ... ... ,(m— 1)ps} it is very clear

that T = TQ U Tl* U Tz* vV Ts—l* V) TS* and |TT*| = mgb(pr) forl <r <s.
where ¢p(1) =1,¢(p") = p"Y(p — 1), r = 1 (Euler phi —function)
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xmP =1 =(x= DBy Tees, (x = &ps) = (x— DYGEOPT () oo W5 ().
(3.1)
Where W5 (x) = [lier,(x — f,inpS)
Foreacht =ps"v e T,", 1 <r <s, there is a g —coset Q,, = {t,tq} c T," and let
Q,s 0 = {t, tq} c {p°, 2p°,3p°, 4p°,5p°, ... ... ... ,(m—1)p°}. Hence there is disjoint

union
mo (p")

2
S
k=1

< mp® and y is odd}
Thus each g —coset Q, , corresponds to an irreducible polynomial over the field IF,.
1

fon(0) = 1_[ -y = [ [ (-g).

u=0

r,v| =2,whereveT ={y: gcd(y,p) =1land 1<y

And T,,,s corresponds to the irreducible polynomial (x — 1) over the field FF,.

Q,s0 = {t,tq} c

{p*, 2p%,3p%, 4p°,5p°, ... ... ... ,(m—

1)p°} corresponds to an irreducible polynomial, f,so(x) = ;:O(x - E,fl"qu). So
the number of irreducible factors of meS — 1 over the field F, i

Lemma 3.2 There are 1 + T |rreducible factors of the polynomial x™° — 1 over the

field F, as follows: x — 1 for T,,,s ; for elements of Ty, fps0(x) = [T=o(x — guka’y

k=1,2,3 ... mT_l and for elements of 7., 1 <r < s
K ¢ (")
frm ) = Moo (x =654 ), k=12,....... ) (3.2)

Recall that the number of primitive idempotents in ring [F, [x]/ (x™P° — 1) are same as the
number of irreducible factors of x™° — 1 over Fy,.

Theorem 3.3 There are 1 + (mp;—_l) primitive idempotents in the ring F, [x]/{x™° — 1) .

These primitive idempotents are given as:
Q) The primitive idempotent

1 .
es,mps(x) = mp* Z (x)l

corresponds to the irreducible polynomial x — 1 over [F,.
(i) For elements of T, the primitive idempotents,
mpS—1

Z Tr(&. ") (x)!, wherek = 1,2,3, ... ... .. —_
i=0

1
eps,O(x) = mps

corresponds to the irreducible polynomial f s o (x) = [Th—o(x — 74"y over
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(i) Forl<r <s,p"v, €T~

xmp’ mp’— —vi ;
By, () = — . 2 TR T (6 ) () (3.3)

mpS x™ -1

corresponds to the irreducible polynomial f;. ,, (x) over F,

k=123, ...... ,%@r), respectively.
Proof: By Equation (3.1), we have F 2 — algebra isomorphism:
@ Fp2x] /(™" — 1) — I Fpelx]/{(x — &), (3.4)
mp°—1 mpS— mpS— mpS—1 '
mpS—1 L
Zax — z I,Za(fmp) Zai(fmps )
i=0
Let M be the mp® X mp® character matrix as follows:
0 mpS—1
(9pe)° Grp) . G ) \
M = i (Er?lp )1 (fmp ) (f:nngs_l)l |
0 mpS—1 m m s_: mpS —
\(fmp )P (L, ) P- @, Lymp 1/
Then we have
(p(z;rl:%s_l a; xi) = (ao, aq, Ay, cev v ons ,amps_l)M = (bo,bl,bz, ......... 'bmps—l)'
(3.5)
By Lemma 2.2
/ A N G R O B \
—0 -1 —(mp -1
(mp° 1) mp*=D\7" e mps—1)) O —1)/
\(e ) )
It is obvious that (bg,by,bs, . ... ,bmps_l): (1,0, ... ... ... ,0) = e is the primitive

idempotent of H;":"’OS_ ! Foz[x]/{((x — ffnps)) . According to the inverse Fourier transform,

we get the primitive idempotents 6 ,,s(x) = Z:":%s_lai x'in the ring F2[x]/{x™P" —
1), which just corresponds to the irreducible polynomial x — 1 over the field F,.
Namely

© (Gs,mps(x)) = (ag, ay,az, wr wor e ,amps_l)T =e
—_ 1 _ _ _ _ s_
(ao, Ay, A, eee een e ,amps_l) =eT 1 = m—ps(l 0’1 1’1 2,.....,1 (mp 1))’
mpS—1
es,mps (x) =
(ii) In equation 3.4, take (bo,bl,bz, ......... ,bmps_l), where b, =1 if we€ Qs,
otherwise b, = 0. Hence,
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(a0; al' az, e amps—l) = (bO' bl; bZJ ey meS_l)M_l
. (Tr(f;o-vk), T”r'(f;l.vk ), ...... ,Tr (E;lvzc(mps_l)))

1 s -
— I T O @)

1
mp

epS,O (X) =

corresponds to the polynomial f s o (x) = [1};—o(x — E"""”).

m

(ii)If 1 < r < s, then we divide into two sub cases.
Sub case (i): If r =sandeach t = v € T, with gcd(v,p) = 1. By Lemma 3.2, there is

an irreducible polynomial f; ,(x) = X _o(x — f;(;ﬂr) over the field F,. It is well-known
that there is a natural IF 2 —algebra isomorphism-

1
o1+ Bl /ifon ) — | [ ool = 62000,

u=0

1 1 1

v K vg W

=Y qoxt = Y agn) Y e (6n)
u=0 u=0 u=0

Note that the identity of the ring FF 2 [x]/{f;,(x)) is equal to identity of the ring F, [x]/
(fsw (D).

Let P be the 2 x 2 character matrix as follows:
0 0
P= (5:;”’5) (frqus)

(&) (en)
‘Pl(c(x)) = (co, c1)P.
Take c(x) = 1, then we have ¢;(1) = (1,0)P = (1,1).
In equation 3.4, take (bg, by, by, ... wo. ... ,bmps_1), where b = 1 if t € {v,vq}, otherwise
b, = 0. Hence

(ao, ay, ap, ..., amps_l) = (bo, bl, bz, . bmps_l)M_l

_ 1 (Tr((frips)_o)'Tr((f;ps)_l)' """ ’Tr((ffips)_(mps—l)n

=
(i)
Therefore there is a primitive idempotent
mpS—1

> T @

i=0

in the ring FF, [x]/{x™?° — 1) which corresponds to the irreducible polynomial £, , (x) over
the field FF,.

es,v (x) = mps

Sub case (ii): If 1<r<sandforeacht= p*"v € T," gcd(v,p) =1. By Lemma
3.2, there is an irreducible polynomial f, , = []j-o(x — {Z‘;i) over FF,. Replacing s by r
in above discussion, we can get the primitive idempotent
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mpT—1

D T

i=0
In the ring FF, [x]/{x™" — 1) which corresponds to an irreducible polynomial £, ,, (x).
By (3.1), there is the natural IF, —algebraic isomorphism:

F,[x] F,[x] 1 F,lx]
- X —

o= 1) @t =1 L L)

1
mp”

Qr,v (X) =

@

1 xmPiq

es—r (X) = o T 1 — (1,0,0, ......... ,0)
Hence 6,,, (x) = 6,_,(x)8,,, (x) are the primitive idempotents in the ring F,[x]/

(x™P* — 1), which corresponds to the irreducible polynomials f; ,(x) over the field FF, for

4. THE WEIGHT DISTRIBUTIONS OF IRREDUCIBLE CYCLIC CODES OF LENGTH

mp*

In this section, we suppose that g2 = 1(mod mp®) and ged(mp,q(q — 1)) = 1,

where p > m be a prime number. In the following part, we give all the weight distributions
of irreducible cyclic codes over the field FF, by primitive idempotents in the ring IF, [x]/
(x™mP* —1).

Let C denotes the irreducible cyclic code of length mp* generated by a primitive
idempotent 8(x) whose parity-check polynomial is the irreducible divisor of x™P° — 1.
Further, it is clear that ¢ = (8(x) ) = (g(x) ), where g(x) = gcd@@(x),x™?" — 1) is
called generator polynomial of the irreducible cyclic code C.

Lemma 4.1. [8] Let C be the [n, k’] code over the field [F, with enumerator A(z) and let B(z)
be weight enumerator of C+. Then

B@) =™ (1+ (g - D24 ().

Lemma 4.2. Suppose that 1 <r <sand gcd(p,v,) = 1. Then all the two distinct
columns of the following 2 X mp™ matrix

—_ 0 _ 1 _ r _1
Tr&, v ) Tr, 5 ) v Tr(&, s~

—_ T _1 _ 0 _ r _2
Tr(g kD) Tre %) ... Tr(E, 5 D)

are linear independent over the field F,.
Proof: Without loss of generality, we can suppose thatu = 1. For0 <i <j<mp" —1,
Tr(&mr) = Tr(&pr) = &npr + Empr bY @ = —1(mod mp®) and the determinant

TrEmr)  Tr(r) 3 N
' o =TrE Y = TrEl T £ 0
Tr(g, Yy Tre ) TG )= Tr(§, ) #

Theorem 4.3. From theorem 3.3, the weight distributions of all irreducible cyclic codes of
length mp* as follows:-
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() Co = (Osmps(x))isan[mp*, 1, mp®] cyclic code with parity-check
polynomial x — 1.

(i) For the elements of Ty, Cp,s o = (6,s,0(x)) Is a [mp*, 2, (m — 1)p*] cyclic code
with parity check polynomial f s o(x) = x? — Tr(§*)x + 1 and its Hamming
weight enumerator polynomial is given by

1+ m(q" — 1)z Dr° 4+ (g% —1—m(q¥ —1))z™".

i) If 1<r<sandmp* v, € T.", k=1,2,u... 2CD then  each
Csv, = (b5, (x)) is a [mp*, 2, mp® —p°~"] cyclic code with parity-check
polynomial

frn GO =x* = Tr(§ ¢ )x+1 and its Hamming weight enumerator
polynomial is given by
1+mp"(gF — Dz™° P 4 (q% — 1 —mp"(¢¥ — 1))z™".
Proof: We only need to prove the case (iii). Suppose that 1 <r < sand mp*"v, €
T,.”. Then, we have fgr”" = E;r”" by p*l(q + 1). Let Ry = F,[x]/{(x™?" — 1) then by the
construction of the primitive idempotent 6, ,, (x) we get
Csp, = (05, (X)) = RO, (x) = Fylx]/{frr, (X)),
Where

frw, () = (x — &k )(x - 5_”") = x?— Tr(fr’;’;r)x + 1 is the parity check polynomial

mp” mp”
of Cs,mps_rvk'
Hence Csv, = {r(x)@s,vk (x):r(x) = ag + a;(x); ag,a; € ]Fq}.

Further it is clear that
X — 1 XM’ —

W (x)mpr = mOd(mes - 1)

xmP" —1

Let f(x) €ER; = F, [x]/{x™" — 1) then the number of non-zero coefficients of f(x) of

degree atmost mp*® — 1 is called the Hamming weight, which is denoted by W (f(x)).
Forr(x) 6,,, (x) € Cy,, and gcd(vy,p") = 1,

w (r(x)@slvk (x)) = psTTW (T(X)Qr,vk (x)),

Where
r(x) 0;,,(x) € R, = F, [x]/¢x™" — 1) and (x)™" =1 mod(x™" — 1).
Assume that p"r(x) 6,.,, (x) = [bo+ bix + ......... , bmpr_l(x)mpr_l]mod(xmpr — 1),
Then, we have
(bg, by, «ev e ... Dy —1)
-0 -1 —v(mp"—1)
1 Tr(fmpr ) Tr(fmpr ) Tr(fmpr )
= (@0.a1) vy (mp” ~1) ;.0 vy, (mp” ~2)
Tr(fmpr ) Tr(fmpr ) T Tr(fmpr )

We shall divide A= {(ay,a;) € F, X F,} into three subsets:
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- -1 —vp.(mp" -2
q |Tr( ) Tr(, )
A1= (aO' al) EN—— E )T (E_vk(mpr_l))
T
mih

a Tr(& 5"
No={(0,0)}, A=A\ (AQUAY).
If (ag, a;) €N, then (bg, by, oo oo ... buyr—1) = 0 and W ((x)6,,,, () = 0.
If (ag,a;) €EAq, then only one of by, by,....... ybppyr—1 is equal to O and
w (r(x)@s,vk (x)) =pS " (mp" — 1).

If (ay, a;) EA,, then all by, by, ... ... ... , b1 are not equal to 0 and W (r(x)es_vk (x)) =

mp?®.

On the other hand, |[Ag|l =1, |A{| = mp” (g% — 1) by Lemma 4.2, and |A,| = (¢%¥ —
1 —mp"(q¥ — 1)), which provides the frequency of the weights. Hence the Hamming
weight enumerator polynomial of each C;,, is 1+ mp"(¢¥ — Dz 7" 4 (g% —
1—mp” (qk' - 1))Zmp5_

By Lemma 4.1, we have the following conclusion:
Corollary 4.4. In  Theorem 43, if 1 <r <s, mpSTv, €T, k=

1,2, .. ,%@U, then the Hamming weight enumerator polynomial of Cg,, is
a2+ (@ = D™ +mp(q - DE - DI P A+ (- D™ - (g -

1—mp"(q—1D)(z-1™),
5. EXAMPLE

In this section, we give a example in support of our results.
We assume that p > 5 is a prime number with gcd(5p, q(q¢ — 1)) = 1, g = —1(mod 5p*), m is a positive
integer.
Exa%nple 5.1:Letp =7,q =3919,s = 2. Then 5p° = 245, thenwe have T = {1,2,3, ...,244},
Ty4s = {245} and T, = {49,98,147,196}.
T," ={7,14,21,28,35,42,56,63, ...,238}, T," = {1,2,3,4,5,6,8,9, ...,244}.
Since g = —1(mod 245) the distinct q cosets are given by
‘Ql,l = {7 B 238}, 91'3 = {21 ) 224}, 91’5 - {35 ) 210}, ‘Ql,9 = {63 ) 182}, 91,11 - {77 ) 168},

‘Ql,13 = {91 B 154‘}, 91'15 = {105 ) 140}, 91‘17 = {119 ) 126}, 91,19 = {133 ) 112}, 91'23 =
{161 B 84‘}, Q1'25 = {175 ) 70}, 01’27 = {189 ) 56}, 91‘29 = {203 ,42}, 91,31 = {217 ) 28},
‘Ql,33 = {231 B 14‘}

Qy1 ={1,244}, Q,35 ={3,242}, Qy5 = {5,240}, Q39 = {9,236}, 0,11 = {11,234},
Q13 ={13,232}, Oy 15 = {15,230}, Q;17 = {17,228}, Q319 = {19,226}, 353 =
{23,222}, Q,,5 = {25,220}, Q97 = {27,218}, O, 59 = {29,216}, O, 3; = {31,214},
Q33 ={33,212}, Qy37; = {37,208}, Q539 = {39,206}, Q341 = {41,204}, Qy43 =
{43,202}, Q; 45 = {45,200}, Q47 = {47,198}, Oy 5; = {51,194}, O, 53 = {53,192},
Q55 = {55,190}, Oy 57 = {57,188}, Q359 = {59,186}, Q361 = {61,184}, )¢5 =
{65,180}, O, ¢7 = {67,178}, Q63 = {68,177}, 0y 69 = {69,176}, 0y 71 = {71,174},
92,73 = {73 ) 172}1 92,75 = {75 ) 170}/ 92,79 = {79 ) 166}1 92,81 = {81 ) 164}: ‘(22,83 =
{83,162}, O, g5 = {85,160}, O, g; = {87,158}, 0, g9 = {89,156}, O, 93 = {93,152},
Q95 = {95,150}, Q397 = {97,148}, Q3 99 = {99,146}, Q3101 = {101,144}, Q103 =
{103,142}, Q197 = {107,138}, Q3 199 = {109,136}, Q117 = {111,134}, Q5113 =
{113,132}, Q115 = {115,130}, Q5 117 = {117,128}, Q5121 = {121,124}, Q153 =
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(123,122}, Qy 155 = {125,120}, Qy157 = {127,118}, Q3159 = {129,116}, Qs 131 =
{131,114}, Qy135 = {135,110}, Q3137 = {137,108}, Q3130 = {139,106}, Qs 141 =
{141,104}, Qp 143 = {143,102}, Qy 145 = {145,100}, Q3149 = {149,96}, Qy 151 =
(151,94}, Q, 155 = {153,92}, Q5155 = {155,90}, Qs 157 = {157,88}, Q, 150 = {159, 86},
Q2,163 = {163,82}, Q2,165 = {165,803}, Q2,167 = {167,78}, Q2,169 = {169,76}, Q2,171 =
(171,74}, Qp 175 = {173,72}, Q3177 = {177 ,68}, Q2170 = {179, 66}, Q, 151 = {181, 64},
Q2,183 = {183, 62}, Q2,185 = {185,603}, Q2,187 = {187,583}, Q2,191 = {191, 54}, Q2,193 =
(193,52}, Q, 105 = {195,50}, Q; 197 = {197 ,48}, Q3 190 = {199,463}, Q; 201 = (201,44},
Q2205 = {205,403}, Q3207 = {207,38}, Q2209 = {209,36}, Q211 = {211,343}, Q513 =
(213,32}, Q515 = {215,303}, Q3210 = {219,26}, Qy251 = (221,24}, Q, 505 = {223,22},
Q2225 = {225,203, Q207 = {227, 18}, Q209 = {229, 16}, Q233 = {233, 12}, (235 =
(235,10}, Q; 537 = {237,8}, Q230 = {239, 6}, Q541 = {241,4}, Qy 243 = {243,2}, The
three classes of irreducible cyclic codes of length 245 in F,[x]/ (x>'" — 1) are the following:
(1) There is one [245,1,245] irreducible cyclic code with parity check polynomial x — 1.
(2) There are two [245,2,196] irreducible cyclic codes with parity check polynomial x? —
Tr(&)x + 1 and its hamming weight enumerator polynomial is 1 + 5(3919% —
1)z'% + (3919% — 1 — 5(3919% — 1))z%5.
(3) There are fifteen [245,2,238] irreducible cyclic codes with parity check polynomial
x% — Tr(&5)x + 1 and its hamming weight enumerator polynomial is 1 + 35(3919%" —
1)z238 +(39192F" — 1 — 35(3919 — 1))z%%5,
(4) There are one hundred five [245,2,244] irreducible cyclic codes with parity check
polynomial x? — Tr(&,45)x + 1 and its hamming weight enumerator polynomial is
1+ 245(3919% — 1)z%* + (3919%¢ — 1 — 245(3919% — 1))z%%,
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